Dr. Anwar Khursheed

Professor (Env. Engg.) Department of Civil Engineering AMU, Aligarh

Importance of Waste Management

- Over 1 billion people are without clean water.
- Approximately 2.3 billion people

(41% of the world population) facing water shortages.

Available water (% of fresh water):

Ground water = 0.648 %

River water = 0.000124%

& lakes

India has 18% **Population of the** world & only 4% fresh

water resources

Water use in India

Source: enincon research

REMEDIES

- Water conservation is insufficient to cope with increasing demand.
- fresh water Traditional

resources such as

lakes,

rivers, and

groundwater

are either diminishing or becoming saline.

Preserve natural resources to sustain future generations.

Effects of Pollutants

Diminishes aesthetic quality.

➤ Unsuitable for Drinking,
Recreation, Agriculture,
Industry.

Effects of Pollutants

- > Destroy aquatic life/ Reduce reproductive abilities.
- **Eventually affect human health / All living beings.**

Sources of Pollutants

Uses

Water Pollution

Agriculture

Pesticides, Fertilizers, Salts

Municipal

Sewage

Power Plant

Elevated Temperature

Industry

Chemical, Heavy metals, Organic Pollutants.

Major Water Users are Major Pollution Contributors

Quality of Domestic Wastewater

WASTEWATER GENERATION AND TREATMENT (mid) IN CLASS - I AND CLASS - II CITIES IN INDIA

At present Total wastewater generation: 38354 MLD

Treatment capacity: 11786 MLD (30.7%)

Treatment Gap: 26568 MLD

only 60% of industrial waste water is treated.

Decadal Growth of Sewage Generation and Treatment in Delhi (MLD)

Municipal Solid Waste in India

Growth of Urban Population Since 1951-2011 in India

- Calculated current Urban population is 407 million, which generate around 16.3 million tons of MSW
- India produces 48.0 million tons of municipal solid waste annually at present.
- Per capita generation of waste varies from 200 gm to 600 gm per capita / day. Average generation rate at 0.4 kg per capita per day in 9391 plus towns.
- Collection efficiency ranges between 50% to 90% of the solid waste generated, and there is hardly any effort of its treatment.

Order of Significance of Water Quality Parameters

1. Pathogens
Disease Producing

2. Organics

Putrification of Environment

3. Suspended Solids

Pathogens

Death From Water Borne Diseases Each Year

Worldwide – 250 million cases, 10 million deaths

Disease	No. of Infected Person	No. of Deaths
Diarrhea	2 billion	4 million
Amoebiasis	500million	NA
Typhoid	1 million	25,000
Cholera	21000	10,000

Microorganism Concentration in Raw Sewage & Infectious Doses

Organisms	Concentration (Number/100ml)	Organism	Infectious Dose
Total Coliforms	10 ⁷ - 10 ¹⁰	Escherichia coli	10 ⁶ - 10 ¹⁰
Clostridium perfringens	10 ³ - 10 ⁵	(enteropathogenic)	
Enterococci	10 ⁴ - 10 ⁵	Clostridium perfringens	1.0 - 10 ¹⁰
Fecal Coliforms	10 ⁴ - 10 ⁹	Salmonella typhi	10 ⁴ - 10 ⁷
Fecal Streptococci	10 ⁴ - 10 ⁶	Vibrio cholerae	10 ³ - 10 ⁷
Shigella	1.0 - 10 ³	Shigella flexneri 2A	180
Salmonella	10 ² - 10 ⁴	Entamoeba histolytica	
Helminth ova	10 -10 ³		20
Enteric virus	10 ² - 10 ⁴	Shigella dysentariae 1	10
Giardia lamblia cysts	10 - 10 ⁴	Giardia lamblia	10
Entamoeba histolytica cysts	1.0 - 10.0	Viruses	1.0 - 10
Cryptosporidium parvum oocysts	10.0 - 10 ³	Ascaris lumbricoides	1.0 - 10

Water Quality Parameters (Impurities in Water)

> Physical

Temp, Taste, Odor, Color, Turbidity, Solids

> Chemical Inorganic, Organic

➤ Biological
Bacteria, Viruses, Protozoa, Helminthes
Pathogenic, Non-pathogenic

High TDS

Country	Irrigated Land Damaged by Salt (million Ha)	
India China Pakistan USA Uzbekistan Iran Turkmenistan Egypt Subtotal World Estimate	7.0 (15%) 6.7 4.2	
	4.2 2.4 1.7	
	1.0 0.9 28.1 (60%)	
	47.7	

Major Constituents of Wastewater

Large Floating Matter

Medium – Fine Floating Matter

Oils & Grease

Grit

Suspended Solids (TSS)

Organic Matter (BOD/COD)

Pathogens

Products of Treatment - Sludges & Gases

Suspended Solids – can cause sludge deposits, flooding and anaerobic conditions in the environment

Flooding – River bed elevation

BOD Cause Dissolved Oxygen Depletion

Waste With Biodegradable Organics

The eutrophication of the <u>Potomac River</u> is evident from the bright green water, caused by a dense bloom of <u>cyanobacteria</u>

Eutrophication promotes excessive plant growth and decay,

- •algae and plankton,
- •causes reduction in water quality.

Nitrogen & mainly Phosphorus is a necessary nutrient for plant growth.

- When algae die they sink to the bottom.
- •Decomposed algal nutrients converted into inorganic.
- •The decomposition of algae uses DO and
- •deprives the deeper waters of oxygen which can kill fish and other organisms.

Draft notification on Disposal of Sewage , Nov 2015

STANDARDS FOR SEWAGE TREATMENT PLANTS ALONG WITH TIME FRAME FOR IMPLEMENTATION

Effluent discharged standards for Sewage Treatment Plant are mentioned below:

Sl. No.	Industry	Parameters	Standards for New STPs (Design after notification date)*
Sewage Treatment Plant	рН	6.5-9.0	
		BOD	10
		COD	50
		TSS	20
		NH ₄ -N	5
		N-total	10
		Fecal Coliform (MPN/100ml)	<100

Note:

- (i) All values in mg/l except for pH and Coliform.
- (ii) These standards will be applicable for discharge in water resources as well as for land disposal. The standards for Fecal Coliform may not be applied for use

Sewage Treatment Scheme

MUNICIPAL WASTEWATER TREATMENT PLANT

AEROBIC PROCESS

Organic Pollutants COD/BOD

CO2+H2O+New Cells

Constructed Wetlands

Flow chart of AMU pilot plant for SWINGS project

Under Prof. Nadeem Khalil

ANAEROBIC PROCESS

UPFLOW ANAEROBIC SLUDGE BLANKET REACTOR

Daily Maintenance

Solid waste - Causing pipe choking and capacity reduction

Staff Deployment & Training

(n=18, Average Capacity=48MLD)

Average Capacity utilization was 41%

Conclusions

- ✓ So first call is to make legislative initiative to make society to Pay for Water at its real price.
- ✓ Shift our focus from Wastewater Treatment Industry to Water Production Industry.
- ✓ It shall be mandatory for State to buy the water on quality regulation.
- **✓** The Water market shall be monitored by a three layer Regulator
- ✓ first Monitoring by the state.
- **✓** Second Public Monitoring
- ✓ Third is creation of Ombudsman i.e. JAL LOKPAL.

The most important is.....

✓ Real research in application which suits to Indian condition.

&

✓ Whichever technology is used it shall be properly operated& maintained.

Contacts

Anwar Khursheed

B.Sc. Engg (AMU), M.Sc. Engg (AMU), PhD (IIT, Roorkee), MISTE

Professor of Environmental Engg.

Department of Civil Engineering

Former Director Computer Centre, University Engineer &

Principal FCI

AMU, Aligarh - 202002, India.

Tel: 09319077764 (M)

AMU EPABX: 0571 2700916 x1962 (O)

E-mail: akhursheed@rediffmail.com, akhursheed.cv@amu.ac.in

SEWERAGE NETWORK

